NFI-A disrupts myeloid cell differentiation and maturation in septic mice.
نویسندگان
چکیده
Mounting evidence supports that sepsis-associated immunosuppression increases mortality. As potential contributors to poor sepsis outcomes, myeloid-derived suppressor cells, which are Gr1(+) CD11b(+) innate-immune cell progenitors unable to differentiate and possess suppressive activities, expand dramatically in septic mice by a process requiring increased microRNA-21 and microRNA-181b expression. The inhibition of these microRNAs in vivo in septic mice restores Gr1(+) CD11b(+) cell differentiation and maturation and improves survival. Here, we show that during sepsis-induced generation of myeloid-derived suppressor cells, transcription factor nuclear factor 1 A type represses cyclin-dependent kinase inhibitor p21 to arrest differentiation of Gr1(+) CD11b(+) cells. Our findings include the following: 1) Gr1(+) CD11b(+) myeloid cells from late septic mice genetically lacking nuclear factor 1 A type cannot suppress CD4(+) T cell proliferation and activation; 2) the reconstitution of nuclear factor 1 A type in microRNA-21 and microRNA-181b-depleted Gr1(+) CD11b(+) myeloid-derived suppressor cells inhibits cyclin-dependent kinase inhibitor p21 and restores the immune-suppressor phenotype; 3) ex vivo nuclear factor 1 A type knockdown in Gr1(+) CD11b(+) myeloid-derived suppressor cells from late septic mice restores cyclin-dependent kinase inhibitor p21 expression and promotes monocyte and dendritic cell differentiation; and 4) ectopic nuclear factor 1 A type expression in normal Gr1(+) CD11b(+) cells generates an immunosuppressive phenotype. We suggest that therapeutically targeting nuclear factor 1 A type during late sepsis might improve survival.
منابع مشابه
Targets of the nuclear factor I regulon involved in early and late development of postmitotic cerebellar granule neurons.
Recent studies have shown that the nuclear factor I (NFI) family controls multiple stages of the postmitotic differentiation of cerebellar granule neurons (CGNs). Regulation of cell-cell signaling is an integral part of this NFI program, which involves expression of the cell adhesion molecules N cadherin and ephrin B1 throughout postmitotic CGN development. Here, we identify two additional down...
متن کاملMesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation.
The Nuclear factor I (NFI) transcription factor family consists of four genes (Nfia, Nfib, Nfic and Nfix) that regulate the development of multiple organ systems in mice and humans. Nfib is expressed in both lung mesenchyme and epithelium and mice lacking Nfib have severe lung maturation defects and die at birth. Here we continue our analysis of the phenotype of Nfib⁻/⁻ lungs and show that Nfib...
متن کاملThe interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation.
We describe a pathway by which the master transcription factor PU.1 regulates human monocyte/macrophage differentiation. This includes miR-424 and the transcriptional factor NFI-A. We show that PU.1 and these two components are interlinked in a finely tuned temporal and regulatory circuitry: PU.1 activates the transcription of miR-424, and this up-regulation is involved in stimulating monocyte ...
متن کاملComparison of Several Maturation Inducing Factors in Dendritic Cell Differentiation
Background: Dendritic cells (DCs) are professional antigen presenting cells that have an important role in the initiation of immune response. The use of maturation factors in dendritic cell differentiation provides a promising approach in immunotherapy. Objective: In this study, we compared tumor necrosis factor-α, polyribocytidylic acid, lipopolysacharide and CpG oligonucleotides in inducing d...
متن کاملMyeloid IKKβ promotes antitumor immunity by modulating CCL11 and the innate immune response.
Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAF(V600E/PTEN(-/-)) allograft model, IKKβ loss in macrophages reduced re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of leukocyte biology
دوره 99 1 شماره
صفحات -
تاریخ انتشار 2016